1
0
Fork 0
This repository has been archived on 2024-02-06. You can view files and clone it, but cannot push or open issues or pull requests.
markdown-it-katex/browser.js

85 lines
2.3 KiB
JavaScript
Raw Permalink Normal View History

2016-03-11 22:56:48 +09:00
var md = require('markdown-it')(),
mk = require('./index');
md.use(mk);
var input = document.getElementById('input'),
output = document.getElementById('output'),
button = document.getElementById('button');
button.addEventListener('click', function(ev){
var result = md.render(input.value);
output.innerHTML = result;
});
/*
# Some Math
$\sqrt{3x-1}+(1+x)^2$
# Maxwells Equations
$\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t}
= \frac{4\pi}{c}\vec{\mathbf{j}} \nabla \cdot \vec{\mathbf{E}} = 4 \pi \rho$
$\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} = \vec{\mathbf{0}}$ (curl of $\vec{\mathbf{E}}$ is proportional to the time derivative of $\vec{\mathbf{B}}$)
$\nabla \cdot \vec{\mathbf{B}} = 0$
\sqrt{3x-1}+(1+x)^2
c = \pm\sqrt{a^2 + b^2}
Maxwell's Equations
\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t}
= \frac{4\pi}{c}\vec{\mathbf{j}} \nabla \cdot \vec{\mathbf{E}} = 4 \pi \rho
\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} = \vec{\mathbf{0}}
\nabla \cdot \vec{\mathbf{B}} = 0
Same thing in a LaTeX array
\begin{array}{c}
\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} &
= \frac{4\pi}{c}\vec{\mathbf{j}} \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
\nabla \cdot \vec{\mathbf{B}} & = 0
\end{array}
\begin{array}{c}
y_1 \\
y_2 \mathtt{t}_i \\
z_{3,4}
\end{array}
\begin{array}{c}
x' &=& &x \sin\phi &+& z \cos\phi \\
z' &=& - &x \cos\phi &+& z \sin\phi \\
\end{array}
# Maxwell's Equations
equation | description
----------|------------
$\nabla \cdot \vec{\mathbf{B}} = 0$ | divergence of $\vec{\mathbf{B}}$ is zero
$\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} = \vec{\mathbf{0}}$ | curl of $\vec{\mathbf{E}}$ is proportional to the rate of change of $\vec{\mathbf{B}}$
$\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} = \frac{4\pi}{c}\vec{\mathbf{j}} \nabla \cdot \vec{\mathbf{E}} = 4 \pi \rho$ | wha?
![electricity](http://i.giphy.com/Gty2oDYQ1fih2.gif)
*/