85 lines
2.3 KiB
JavaScript
85 lines
2.3 KiB
JavaScript
|
var md = require('markdown-it')(),
|
||
|
mk = require('./index');
|
||
|
|
||
|
md.use(mk);
|
||
|
|
||
|
var input = document.getElementById('input'),
|
||
|
output = document.getElementById('output'),
|
||
|
button = document.getElementById('button');
|
||
|
|
||
|
button.addEventListener('click', function(ev){
|
||
|
|
||
|
var result = md.render(input.value);
|
||
|
|
||
|
output.innerHTML = result;
|
||
|
|
||
|
});
|
||
|
|
||
|
/*
|
||
|
|
||
|
# Some Math
|
||
|
|
||
|
$\sqrt{3x-1}+(1+x)^2$
|
||
|
|
||
|
# Maxwells Equations
|
||
|
|
||
|
$\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t}
|
||
|
= \frac{4\pi}{c}\vec{\mathbf{j}} \nabla \cdot \vec{\mathbf{E}} = 4 \pi \rho$
|
||
|
|
||
|
$\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} = \vec{\mathbf{0}}$ (curl of $\vec{\mathbf{E}}$ is proportional to the time derivative of $\vec{\mathbf{B}}$)
|
||
|
|
||
|
$\nabla \cdot \vec{\mathbf{B}} = 0$
|
||
|
|
||
|
|
||
|
|
||
|
\sqrt{3x-1}+(1+x)^2
|
||
|
|
||
|
c = \pm\sqrt{a^2 + b^2}
|
||
|
|
||
|
Maxwell's Equations
|
||
|
|
||
|
\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t}
|
||
|
= \frac{4\pi}{c}\vec{\mathbf{j}} \nabla \cdot \vec{\mathbf{E}} = 4 \pi \rho
|
||
|
|
||
|
\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} = \vec{\mathbf{0}}
|
||
|
|
||
|
\nabla \cdot \vec{\mathbf{B}} = 0
|
||
|
|
||
|
Same thing in a LaTeX array
|
||
|
\begin{array}{c}
|
||
|
|
||
|
\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} &
|
||
|
= \frac{4\pi}{c}\vec{\mathbf{j}} \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\
|
||
|
|
||
|
\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\
|
||
|
|
||
|
\nabla \cdot \vec{\mathbf{B}} & = 0
|
||
|
|
||
|
\end{array}
|
||
|
|
||
|
|
||
|
\begin{array}{c}
|
||
|
y_1 \\
|
||
|
y_2 \mathtt{t}_i \\
|
||
|
z_{3,4}
|
||
|
\end{array}
|
||
|
|
||
|
\begin{array}{c}
|
||
|
x' &=& &x \sin\phi &+& z \cos\phi \\
|
||
|
z' &=& - &x \cos\phi &+& z \sin\phi \\
|
||
|
\end{array}
|
||
|
|
||
|
|
||
|
|
||
|
# Maxwell's Equations
|
||
|
|
||
|
|
||
|
equation | description
|
||
|
----------|------------
|
||
|
$\nabla \cdot \vec{\mathbf{B}} = 0$ | divergence of $\vec{\mathbf{B}}$ is zero
|
||
|
$\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} = \vec{\mathbf{0}}$ | curl of $\vec{\mathbf{E}}$ is proportional to the rate of change of $\vec{\mathbf{B}}$
|
||
|
$\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} = \frac{4\pi}{c}\vec{\mathbf{j}} \nabla \cdot \vec{\mathbf{E}} = 4 \pi \rho$ | wha?
|
||
|
|
||
|
![electricity](http://i.giphy.com/Gty2oDYQ1fih2.gif)
|
||
|
*/
|