diff --git a/browser.js b/browser.js deleted file mode 100644 index 2a703e4..0000000 --- a/browser.js +++ /dev/null @@ -1,84 +0,0 @@ -var md = require('markdown-it')(), - mk = require('./index'); - -md.use(mk); - -var input = document.getElementById('input'), - output = document.getElementById('output'), - button = document.getElementById('button'); - -button.addEventListener('click', function(ev){ - - var result = md.render(input.value); - - output.innerHTML = result; - -}); - -/* - -# Some Math - -$\sqrt{3x-1}+(1+x)^2$ - -# Maxwells Equations - -$\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} -= \frac{4\pi}{c}\vec{\mathbf{j}} \nabla \cdot \vec{\mathbf{E}} = 4 \pi \rho$ - -$\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} = \vec{\mathbf{0}}$ (curl of $\vec{\mathbf{E}}$ is proportional to the time derivative of $\vec{\mathbf{B}}$) - -$\nabla \cdot \vec{\mathbf{B}} = 0$ - - - -\sqrt{3x-1}+(1+x)^2 - -c = \pm\sqrt{a^2 + b^2} - -Maxwell's Equations - -\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} -= \frac{4\pi}{c}\vec{\mathbf{j}} \nabla \cdot \vec{\mathbf{E}} = 4 \pi \rho - -\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} = \vec{\mathbf{0}} - -\nabla \cdot \vec{\mathbf{B}} = 0 - -Same thing in a LaTeX array -\begin{array}{c} - -\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & -= \frac{4\pi}{c}\vec{\mathbf{j}} \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ - -\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ - -\nabla \cdot \vec{\mathbf{B}} & = 0 - -\end{array} - - -\begin{array}{c} -y_1 \\ -y_2 \mathtt{t}_i \\ -z_{3,4} -\end{array} - -\begin{array}{c} -x' &=& &x \sin\phi &+& z \cos\phi \\ -z' &=& - &x \cos\phi &+& z \sin\phi \\ -\end{array} - - - -# Maxwell's Equations - - -equation | description -----------|------------ -$\nabla \cdot \vec{\mathbf{B}} = 0$ | divergence of $\vec{\mathbf{B}}$ is zero -$\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} = \vec{\mathbf{0}}$ | curl of $\vec{\mathbf{E}}$ is proportional to the rate of change of $\vec{\mathbf{B}}$ -$\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} = \frac{4\pi}{c}\vec{\mathbf{j}} \nabla \cdot \vec{\mathbf{E}} = 4 \pi \rho$ | wha? - -![electricity](http://i.giphy.com/Gty2oDYQ1fih2.gif) -*/ diff --git a/index.js b/index.js deleted file mode 100644 index 5df6286..0000000 --- a/index.js +++ /dev/null @@ -1,256 +0,0 @@ -/* Process inline math */ -/* -Like markdown-it-simplemath, this is a stripped down, simplified version of: -https://github.com/runarberg/markdown-it-math - -It differs in that it takes (a subset of) LaTeX as input and relies on KaTeX -for rendering output. -*/ - -'use strict'; - -var katex = require('katex'); - - -function scanDelims(state, start, delimLength) { - var pos = start, lastChar, nextChar, count, can_open, can_close, - isLastWhiteSpace, isLastPunctChar, - isNextWhiteSpace, isNextPunctChar, - left_flanking = true, - right_flanking = true, - max = state.posMax, - isWhiteSpace = state.md.utils.isWhiteSpace, - isPunctChar = state.md.utils.isPunctChar, - isMdAsciiPunct = state.md.utils.isMdAsciiPunct; - - // treat beginning of the line as a whitespace - lastChar = start > 0 ? state.src.charCodeAt(start - 1) : 0x20; - - if (pos >= max) { - can_open = false; - } - - pos += delimLength; - - count = pos - start; - - // treat end of the line as a whitespace - nextChar = pos < max ? state.src.charCodeAt(pos) : 0x20; - - isLastPunctChar = isMdAsciiPunct(lastChar) || isPunctChar(String.fromCharCode(lastChar)); - isNextPunctChar = isMdAsciiPunct(nextChar) || isPunctChar(String.fromCharCode(nextChar)); - - isLastWhiteSpace = isWhiteSpace(lastChar); - isNextWhiteSpace = isWhiteSpace(nextChar); - - if (isNextWhiteSpace) { - left_flanking = false; - } else if (isNextPunctChar) { - if (!(isLastWhiteSpace || isLastPunctChar)) { - left_flanking = false; - } - } - - if (isLastWhiteSpace) { - right_flanking = false; - } else if (isLastPunctChar) { - if (!(isNextWhiteSpace || isNextPunctChar)) { - right_flanking = false; - } - } - - can_open = left_flanking; - can_close = right_flanking; - - return { - can_open: can_open, - can_close: can_close, - delims: count - }; -} - - -function makeMath_inline(open, close) { - return function math_inline(state, silent) { - var startCount, - found, - res, - token, - closeDelim, - max = state.posMax, - start = state.pos, - openDelim = state.src.slice(start, start + open.length); - - if (openDelim !== open) { return false; } - if (silent) { return false; } // Don’t run any pairs in validation mode - - res = scanDelims(state, start, openDelim.length); - startCount = res.delims; - - if (!res.can_open) { - state.pos += startCount; - // Earlier we checked !silent, but this implementation does not need it - state.pending += state.src.slice(start, state.pos); - return true; - } - - state.pos = start + open.length; - - while (state.pos < max) { - closeDelim = state.src.slice(state.pos, state.pos + close.length); - if (closeDelim === close) { - res = scanDelims(state, state.pos, close.length); - if (res.can_close) { - found = true; - break; - } - } - - state.md.inline.skipToken(state); - } - - if (!found) { - // Parser failed to find ending tag, so it is not a valid math - state.pos = start; - return false; - } - - // Found! - state.posMax = state.pos; - state.pos = start + close.length; - - // Earlier we checked !silent, but this implementation does not need it - token = state.push('math_inline', 'math', 0); - token.content = state.src.slice(state.pos, state.posMax); - token.markup = open; - - state.pos = state.posMax + close.length; - state.posMax = max; - - return true; - }; -} - -function makeMath_block(open, close) { - return function math_block(state, startLine, endLine, silent) { - var openDelim, len, params, nextLine, token, firstLine, lastLine, lastLinePos, - haveEndMarker = false, - pos = state.bMarks[startLine] + state.tShift[startLine], - max = state.eMarks[startLine]; - - if (pos + open.length > max) { return false; } - - openDelim = state.src.slice(pos, pos + open.length); - - if (openDelim !== open) { return false; } - - pos += open.length; - firstLine = state.src.slice(pos, max); - - // Since start is found, we can report success here in validation mode - if (silent) { return true; } - - if (firstLine.trim().slice(-close.length) === close) { - // Single line expression - firstLine = firstLine.trim().slice(0, -close.length); - haveEndMarker = true; - } - - // search end of block - nextLine = startLine; - - for (;;) { - if (haveEndMarker) { break; } - - nextLine++; - - if (nextLine >= endLine) { - // unclosed block should be autoclosed by end of document. - // also block seems to be autoclosed by end of parent - break; - } - - pos = state.bMarks[nextLine] + state.tShift[nextLine]; - max = state.eMarks[nextLine]; - - if (pos < max && state.tShift[nextLine] < state.blkIndent) { - // non-empty line with negative indent should stop the list: - break; - } - - if (state.src.slice(pos, max).trim().slice(-close.length) !== close) { - continue; - } - - if (state.tShift[nextLine] - state.blkIndent >= 4) { - // closing block math should be indented less then 4 spaces - continue; - } - - lastLinePos = state.src.slice(0, max).lastIndexOf(close); - lastLine = state.src.slice(pos, lastLinePos); - - pos += lastLine.length + close.length; - - // make sure tail has spaces only - pos = state.skipSpaces(pos); - - if (pos < max) { continue; } - - // found! - haveEndMarker = true; - } - - // If math block has heading spaces, they should be removed from its inner block - len = state.tShift[startLine]; - - state.line = nextLine + (haveEndMarker ? 1 : 0); - - token = state.push('math_block', 'math', 0); - token.block = true; - token.content = (firstLine && firstLine.trim() ? firstLine + '\n' : '') + - state.getLines(startLine + 1, nextLine, len, true) + - (lastLine && lastLine.trim() ? lastLine : ''); - token.info = params; - token.map = [ startLine, state.line ]; - token.markup = open; - - return true; - }; -} - - -module.exports = function math_plugin(md) { - // Default options - - var inlineOpen = '$', - inlineClose = '$', - blockOpen = '$$', - blockClose = '$$'; - // set KaTeX as the renderer for markdown-it-simplemath - var katexInline = function(latex){ - return katex.renderToString(latex, {"displayMode" : false}); - }; - - var inlineRenderer = function(tokens, idx){ - return katexInline(tokens[idx].content); - }; - - var katexBlock = function(latex){ - return katex.renderToString(latex, {"displayMode" : true}); - } - - var blockRenderer = function(tokens, idx){ - return katexBlock(tokens[idx].content) + '\n'; - } - - var math_inline = makeMath_inline(inlineOpen, inlineClose); - var math_block = makeMath_block(blockOpen, blockClose); - - md.inline.ruler.before('escape', 'math_inline', math_inline); - md.block.ruler.after('blockquote', 'math_block', math_block, { - alt: [ 'paragraph', 'reference', 'blockquote', 'list' ] - }); - md.renderer.rules.math_inline = inlineRenderer; - md.renderer.rules.math_block = blockRenderer; -};