var md = require('markdown-it')(), mk = require('./index'); md.use(mk); var input = document.getElementById('input'), output = document.getElementById('output'), button = document.getElementById('button'); button.addEventListener('click', function(ev){ var result = md.render(input.value); output.innerHTML = result; }); /* # Some Math $\sqrt{3x-1}+(1+x)^2$ # Maxwells Equations $\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} = \frac{4\pi}{c}\vec{\mathbf{j}} \nabla \cdot \vec{\mathbf{E}} = 4 \pi \rho$ $\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} = \vec{\mathbf{0}}$ (curl of $\vec{\mathbf{E}}$ is proportional to the time derivative of $\vec{\mathbf{B}}$) $\nabla \cdot \vec{\mathbf{B}} = 0$ \sqrt{3x-1}+(1+x)^2 c = \pm\sqrt{a^2 + b^2} Maxwell's Equations \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} = \frac{4\pi}{c}\vec{\mathbf{j}} \nabla \cdot \vec{\mathbf{E}} = 4 \pi \rho \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} = \vec{\mathbf{0}} \nabla \cdot \vec{\mathbf{B}} = 0 Same thing in a LaTeX array \begin{array}{c} \nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} & = \frac{4\pi}{c}\vec{\mathbf{j}} \nabla \cdot \vec{\mathbf{E}} & = 4 \pi \rho \\ \nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} & = \vec{\mathbf{0}} \\ \nabla \cdot \vec{\mathbf{B}} & = 0 \end{array} \begin{array}{c} y_1 \\ y_2 \mathtt{t}_i \\ z_{3,4} \end{array} \begin{array}{c} x' &=& &x \sin\phi &+& z \cos\phi \\ z' &=& - &x \cos\phi &+& z \sin\phi \\ \end{array} # Maxwell's Equations equation | description ----------|------------ $\nabla \cdot \vec{\mathbf{B}} = 0$ | divergence of $\vec{\mathbf{B}}$ is zero $\nabla \times \vec{\mathbf{E}}\, +\, \frac1c\, \frac{\partial\vec{\mathbf{B}}}{\partial t} = \vec{\mathbf{0}}$ | curl of $\vec{\mathbf{E}}$ is proportional to the rate of change of $\vec{\mathbf{B}}$ $\nabla \times \vec{\mathbf{B}} -\, \frac1c\, \frac{\partial\vec{\mathbf{E}}}{\partial t} = \frac{4\pi}{c}\vec{\mathbf{j}} \nabla \cdot \vec{\mathbf{E}} = 4 \pi \rho$ | wha? ![electricity](http://i.giphy.com/Gty2oDYQ1fih2.gif) */