55 lines
1.3 KiB
TypeScript
55 lines
1.3 KiB
TypeScript
import * as fs from "node:fs";
|
|
import { fileURLToPath } from "node:url";
|
|
import { dirname } from "node:path";
|
|
import * as nsfw from "nsfwjs";
|
|
import si from "systeminformation";
|
|
|
|
const _filename = fileURLToPath(import.meta.url);
|
|
const _dirname = dirname(_filename);
|
|
|
|
const REQUIRED_CPU_FLAGS = ["avx2", "fma"];
|
|
let isSupportedCpu: undefined | boolean = undefined;
|
|
|
|
let model: nsfw.NSFWJS;
|
|
|
|
export async function detectSensitive(
|
|
path: string,
|
|
): Promise<nsfw.predictionType[] | null> {
|
|
try {
|
|
if (isSupportedCpu === undefined) {
|
|
const cpuFlags = await getCpuFlags();
|
|
isSupportedCpu = REQUIRED_CPU_FLAGS.every((required) =>
|
|
cpuFlags.includes(required),
|
|
);
|
|
}
|
|
|
|
if (!isSupportedCpu) {
|
|
console.error("This CPU cannot use TensorFlow.");
|
|
return null;
|
|
}
|
|
|
|
const tf = await import("@tensorflow/tfjs-node");
|
|
|
|
if (model == null)
|
|
model = await nsfw.load(`file://${_dirname}/../../nsfw-model/`, {
|
|
size: 299,
|
|
});
|
|
|
|
const buffer = await fs.promises.readFile(path);
|
|
const image = (await tf.node.decodeImage(buffer, 3)) as any;
|
|
try {
|
|
const predictions = await model.classify(image);
|
|
return predictions;
|
|
} finally {
|
|
image.dispose();
|
|
}
|
|
} catch (err) {
|
|
console.error(err);
|
|
return null;
|
|
}
|
|
}
|
|
|
|
async function getCpuFlags(): Promise<string[]> {
|
|
const str = await si.cpuFlags();
|
|
return str.split(/\s+/);
|
|
}
|