This allows the inbox system to be separate from Person, allowing other kinds
of objects to have inboxes too. Much like there's FollowerSet which works
separately from Tickets, and will allow to have follower sets for projects,
users, etc. too.
Inboxes are made independent from Person users because I'm going to give
Projects inboxes too.
A thing still missing there is that it sets empty audience for comments on
remote tickets, but that's fine because dev.angeley.es doesn't have such
comments in the database.
I added a migration that creates an ugly fake OutboxItem for messages that
don't have one. I'll try to turn it into a real one. And then very possibly
remove the whole ugly migration, replacing it with addFielfRefRequiredEmpty,
which should work for empty instances.
- Allow client to specify recipients that don't need to be delivered to
- When fetching recipient, recognize collections and don't try to deliver to
them
- Remember collections in DB, and use that to skip HTTP delivery
My parser doesn't support default=, and I think it's safe to assume nobody is
running an instance whose DB schema version is one of those first 5 where
default= exists, so I'm remvoing it from the original 2016 model file. The
unset-default migrations remain, and I checked in `psql` that PostgreSQL
accepts the operation on columns that don't have a default value. If it turns
out to be a problem, I can replace those migrations with no-op ones.
It runs checks against all the relevant tables, but ultimately just inserts the
activity into the recipient's inbox and nothing more, leaving the RemoteMessage
creation and inbox forwarding to the project inbox handler.
I wrote a function handleOutboxNote that's supposed to do the whole outbox POST
handler process. There's an outbox item table in the DB now, I adapted things
in various source files. Ticket comment federation work is still in progress.
The custom module provides a parametric wrapper, allowing any specific
FromJSON/ToJSON instance to be used. It's a standalone module though, and not a
wrapper of persistent-postgresql, because persistent-postgresql uses aeson
Value and it prevents using toEncoding to get from the value directly to a
string.
When we verify an HTTP signature,
* If we know the key, check in the DB whether we know the actor lists it. If it
doesn't, and there's room left for keys, HTTP GET the actor and update the DB
accordingly.
* If we know the key but had to update it, do the same, check usage in DB and
update DB if needed
* If we don't know the key, record usage in DB
However,
* If we're GETing a key and discovering it's a shared key, we GET the actor to
verify it lists the key. When we don't know the key at all yet, that's fine
(can be further optimized but it's marginal), but if it's a key we do know,
it means we already know the actor and for now it's enough for us to rely
only on the DB to test usage.
When a local user wants to publish an activity, we were always GETing the
recipient actor, so that we could determine their inbox and POST the activity
to it. But now, instead, whenever we GET an actor (whether it's for the key sig
verification or for determining inbox URI), we keep their inbox URI in the
database, and we don't need to GET it again next time.
Using a dedicated type allows to record in the type the guarantees that we
provide, such as scheme being HTTPS and authority being present. Allows to
replace ugly `fromJust` and such with direct field access.
Allow keys to specify expiration time using w3c security vocabulary. If a key
has expired, we treat it like sig validation failure and re-fetch the key from
the other server. And we never accept a sig, even a valid sig, if the key has
expired.
Since servers keep actors and keys in the DB, expiration can be a nice way to
ask that keys aren't used more than we want them to. The security vocab spec
also recommends to set expiration time on keys, so it's nice to support this
feature.
It's now possible for activities we be attributed to actors that have more than
one key. We allow up to 2 keys. We also store in the DB. Scaling to support any
number of keys is trivial, but I'm limiting to 2 to avoid potential trouble and
because 2 is the actual number we need.
By having 2 keys, and replacing only one of them in each rotation, we avoid
race conditions. With 1 key, the following can happen:
1. We send an activity to another server
2. We rotate our key
3. The server reaches the activity in its processing queue, tries to verify our
request signature, but fails because it can't fetch the key. It's the old
key and we discarded it already, replaced it with the new one
When we use 2 keys, the previous key remains available and other servers have
time to finish processing our requests signed with that key. We can safely
rotate, without worrying about whether the user sent anything right before the
rotation time.
Caveat: With this feature, we allow OTHER servers to rotate freely. It's safe
because it's optional, but it's just Vervis right now. Once Vervis itself
starts using 2 keys, it will be able to rotate freely without race condition
risk, but probably Mastodon etc. won't accept its signatures because of the use
of 2 keys and because they're server-scope keys.
Maybe I can get these features adopted by the fediverse?
* Repo collab now supports basic default roles developer/user/guest like
project collab does
* User/Anon collab for repos and projects are now stored as fields instead of
in dedicated tables, there was never a need for dedicated tables but I didn't
see that before
* Repo push op is now part of `ProjectOperation`
* `RepoRole` and related code has been entirely removed, only project roles
remain and they're used for both repos and projects
* This is the first not-totally-trivial DB migration in Vervis, it's automatic
but please be careful and report errors
Until now the list of DB migration actions was incomplete, containing only
changes made since I added the migration system itself. It now contains the
2016-08-04 model, and then every change made since then.
IMPORTANT: The 2016-08-04 instance doesn't have a schema version entity at all,
so it is assigned version 0, while the actual version of its schema is 1. I'm
going to patch persistent-migration to allow it to be 1, making the migration
path smooth.